MENU

Follow us

Florian Niedermann

Florian Niedermann

Differing measurements of the expansion rate of the Universe have given rise to an observational dilemma in cosmology commonly referred to as the Hubble tension. A possible solution is provided by the model of New Early Dark Energy. Here, a scalar field’s false vacuum energy plays the role of an early dark energy component that leads to a short repulsive boost close to matter-radiation equality before it decays through a fast, triggered first-order phase transition. I will outline a particular microphysical implementation, highlight the importance of a trigger mechanism, and discuss the model’s phenomenology. Finally, I will report on recent results and show how the same physics can address another observational challenge relating to the large-scale structure of the Universe.