CosmoVerse Adventures:

Geometric Gravity

Lesson Plan

Grade/ Grade Band:	Topic: Geometric Gravity	Lesson #	in a series oflessons
Brief Lesson Description: This lesson allows students to embark on an interactive journey through the concepts of gravity, exploring Newton's			
and Einstein's theories. Experience hands-on activities and cosmic adventures to understand how gravity shapes our universe			
Specific Learning Outcomes: By the end of the lesson, students will be able to:			
(1) Understand the fundamental differences between Newtonian and Einsteinian gravity			
(2) Grasp the concept of spacetime curvature as explained by Einstein's theory of General Relativity			
Narrative / Background Information			
Prior Student Knowledge: Students should have a basic understanding of:			
 Familiarity with the concept of gravity as a force that attracts objects with mass. A grash of fundamental physics concepts like force, motion, and the behavior of light 			
Materials needed:	t fitting oon		
 A plastic bottle with a tight-fitting cap A pin or small pail to make holes in the bottle 			
 Water to fill the bottle 			
 Plastic sheet to contain the dripping water 			
Access to a printer			
Projector			
A large, stretchable rubber sheet or spandex fabric			
A frame or stand to stretch and secure the sheet (optional)			
A heavy ball (e.g., a metal or rubber ball)			
• Smaller balls (e.g., marbles or ping pong balls)			
LESSON PLAN – 5-E Middel			
Activity: Start with a video of a falling	est and connect their prior knowledge to the concept of grav	ity.	
Discussion:			
(1) What do you imagine the sensation of weightlessness would be like, as Einstein described?			
(2) Considering the video of the bowling ball and feather, why do you think removing air resistance results in both objects falling at the			
same rate?			
(3) If gravity acts over vast distances like between the Earth and the Sun, why don't we feel the Sun's gravity as strongly as we feel the			
Earth's?			
EXPLORE: Dive into the main content with the students through the story with Albert Einstein.			
Activity: Share/Read out the conversation with Einstein.			
(1) Why do you think Mercury	's peculiar orbit was such a crucial piece of evidence for Finst	ein's theory?	
(2) How does the concept of ti	me dilation in strong gravitational fields challenge our every	lav understandi	ing of time?
(3) Why do you think it's impo	rtant to understand both Newton's and Einstein's theories of	gravity? How d	lo they complement each other
EXPLAIN: Introduce hands-on learning with the Action Lab.			
Activity: Conduct the "Free Fall Water Bottle" and "Space-time Rubber Sheet Gravity" demonstrations.			
Discussion:			
(1) Why does the water stop s	praying out of the bottle when it's in free fall? How does this	relate to Einste	in's theory of gravity?
(2) How do these demonstrati	ons change your understanding of gravity compared to befor	e?	
ELABORATE: Extend and apply gravitational concepts to broader contexts.			
Activity: Interactive simulations or th	ought experiments to visualize the curvature of spacetime ar	nd its effects on	light and matter.
EVALUATE: Assess students' understanding and application of gravity concepts.			
Activity: A quiz or project where students explain gravity's effects in various scenarios, using both Newton's and Einstein's perspectives.			
Discussion:			
(1) How would you use Newto	n's and Einstein's theories to explain the orbit of a satellite an	round Earth?	
(2) In what scenarios might on	e theory be more applicable than the other?		
Homework/Extension: For students interested in further exploring the intriguing world of gravity and spacetime, the "Cosmic Library" (as			
referenced in our CosmoVerse adventures) offers a treasure trove of resources for extended learning:			
 Interactive Simulations: Encourage students to engage with online simulations that allow them to visualize and manipulate the effects of gravity in a spacetime context 			
 Assign a research project w 	where students explore a tonic related to Finstein's theories o	f relativity such	as the role of gravity in the
formation of galaxies, grav	itational waves, or time dilation effects in space travel.	clativity, such	as the role of gravity in the