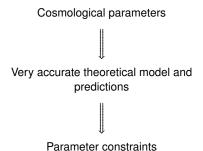
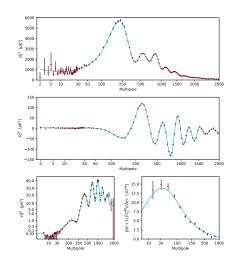
The halo mass function in clustering dark energy models as a tool versus the σ_8 tension


Francesco Pace with D. Bertacca, Uni Padova

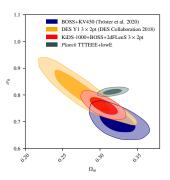

Università di Torino, Italy

1st Jun 2023, CosmoVerse, Anomalies & Tensions in Cosmology, Lisbon, Portugal

Main observables

- Two different sets of observables: late and early times
- Early times: CMB (linear physics, very well understood, precise measurements)
- Late times: clusters and galaxy clusters (non-linear physics, baryonic effects, many uncertainties)

Courtesy of https://www.cosmos.esa.int, Planck2018 results


Cosmology from clusters

- Largest gravitationally bound objects in the Universe
- Highly sensitive to cosmology
- Strong dependence on $\Omega_{\rm m}$ and $\sigma_{\rm 8}$
- Look for them with SZ effect, X-ray emission, Optical
- Two key ingredients: mass and mass function (based on N-body simulations)
- Mass is tricky (scaling relations, bias, halo shape, ...)
- Relatively high uncertainties with the mass function

Anomalies & Tensions

- H₀ with local measurements
- $S_8(\sigma_8)$ with cosmic shear data \leftarrow
- A_{lens}
- $\quad \bullet \quad \Omega_K \neq 0$

The σ_8 tension

$$S_8 = \sqrt{\Omega_m/0.3}$$

- 3σ discrepancy between Planck and SZ number counts
- Confirmed by many other SZ experiments
- It amounts to a factor of two in the number counts of very massive objects
- $S_8 = 0.789 \pm 0.012 \text{ vs } S_8 = 0.834 \pm 0.016 \text{ (Clusters vs Planck)}$

Proposed solutions to the σ_8 tension

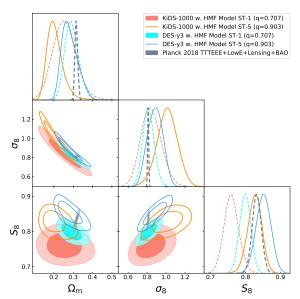
- Correlation between S_8 and $H_0 \rightarrow$ need to solve them both
- Early-time solutions
 - Axion monodromy
 - (New) Early dark energy
 - Vary N_{eff}
 - Modified Recombination history
 - ...
- Late-time solutions
 - Bulk viscosity
 - Various dark energy models
 - Modified gravity models
 - Clustering dark energy ←

The halo mass function

- Number of halos per unit mass and volume at a given time
- Very sensitive to cosmology in the high-mass tail
- But there are strong uncertainties in its theoretical formulation
- Baryons usually neglected, but they are very important
- Its determination from observations is model dependent → we need local measurements
- Accurate mass determination is very important

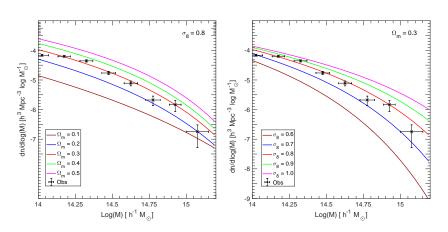
Cosmology dependence on the halo mass function

ST HMF


$$\frac{dn}{dM} = -\sqrt{\frac{2\tilde{a}}{\pi}}A\left[1 + \left(\tilde{a}v^2\right)^{-p}\right]\frac{\bar{\rho}_{\rm m}}{M^2}v\frac{d\ln\sigma_M}{d\ln M}\exp\left(-\frac{1}{2}v^2\right)$$

Mass determination

$$M(R < 1.5 \,\mathrm{Mpc}/h) \propto \kappa_{\Delta} T_X/(1+z)$$


$$v = \frac{\delta_{\rm c}}{D_{\perp}\sigma_{\rm R}}$$
 $\kappa_{\Delta} = \kappa_{\Delta}(\Delta_{\rm Vir})$ $p = 0.3$, $q = 0.707$

Are the ΛCDM HMF parameters not correct?

Or is it just calibration?

$$\Omega_{\rm m}=$$
 0.31, $\sigma_{\rm 8}=$ 0.81 for Tinker 08

Clustering Dark Energy

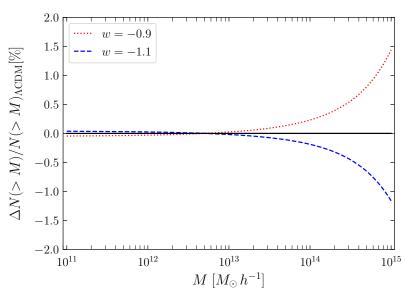
- Dark energy can cluster at all scales
- Clustering dictated by the sound speed
- ullet For fully clustering DE ($c_{
 m s}^2=$ 0) $\delta_{
 m de}=rac{{
 m 1+}w_{
 m de}}{{
 m 1-}3w_{
 m de}}\delta_{
 m m}$
- \bullet In this case, δ_{de} contributes substantially to the gravitational potential
- $\bullet \ \delta = \delta_{\rm m} + \frac{\Omega_{\rm de}}{\Omega_{\rm m}} \delta_{\rm de}$

The equations for $c_s^2 = 0$

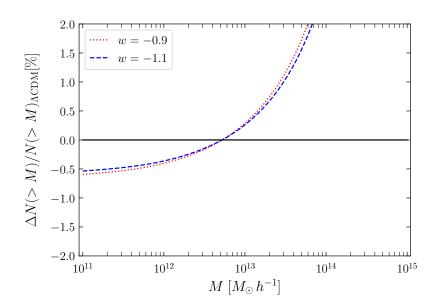
Continuity equation

$$\delta_{\mathrm{de}}^{\prime}-3w_{\mathrm{de}}\delta_{\mathrm{de}}+(1+w_{\mathrm{de}}+\delta_{\mathrm{de}})\tilde{\theta}=0$$

Euler equation

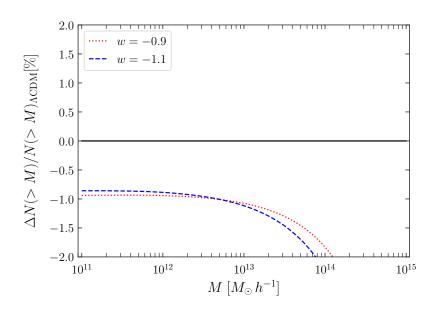

$$\tilde{\theta}' + \left(2 + \frac{H'}{H}\right)\tilde{\theta} + \frac{\tilde{\theta}^2}{3} + \frac{\nabla^2 \Phi}{H^2} = 0$$

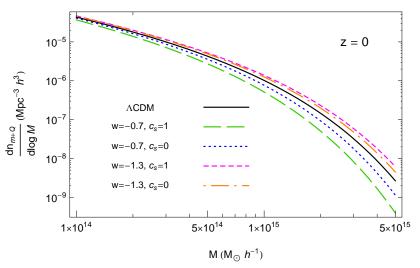
Poisson equation


$$abla^2 \Phi = rac{3}{2} H^2 \left(\Omega_{
m m} \delta_{
m m} + \Omega_{
m de} \delta_{
m de}
ight)$$

HMF for smooth DE models

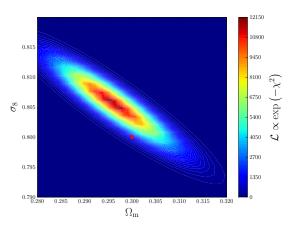
Same σ_8 of Λ CDM


HMF for clustering DE models


Which mass?

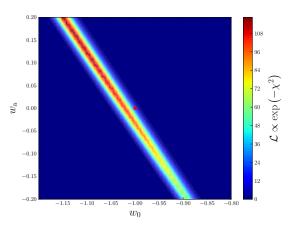
- When dark energy clusters, the halo mass might need to be redefined
- Usually, $M_{\rm tot} =
 ho_{
 m m} + \delta
 ho_{
 m de}$
- $M_{\rm tot}$ is not constant in the perturbation formalism
- Defined in analogy to the ΛCDM model
- If the mass changes, also the mass function needs to be corrected
- A couple of corrections proposed

Corrected mass in the HMF

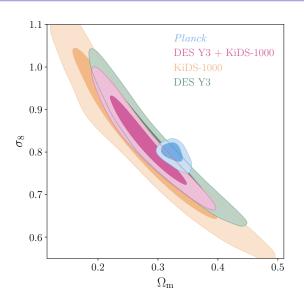


Corrected HMF

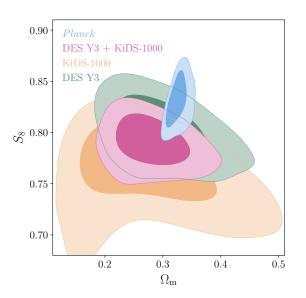
Is that all?


Fitting to a wrong theoretical model induces biases on the cosmological parameters

Reische, FP et al., 2016


Is that all?

Fitting to a wrong theoretical model induces biases on the cosmological parameters



Reische, FP et al., 2016

But at the end there might no be any tension

But at the end there might no be any tension

Conclusions and outlook

- The HMF is a very valuable cosmological tool
- It can shade light on dark energy and on tensions
- Still large error bars and theoretical uncertainties
- Care is required when used for cosmological predictions
- Need to compare and test theoretical predictions with future N-body simulations of clustering dark energy
- Code validation for the spherical collapse model