
Stability Conditions for the Horndeski Scalar Field
Gravity Model

Cláudio Gomes
CF-UM-UP

CosmoVerse@Lisbon 2023

May 28, 2023



0 Outline | 1

1 Why not GR?

2 Horndeski Gravity

3 Energy in Gravity

4 Our Results

5 Conclusions and Outlook



1 Outline | 2

1 Why not GR?

2 Horndeski Gravity

3 Energy in Gravity

4 Our Results

5 Conclusions and Outlook



1 GR got some serious injuries... | 3

Successes:
I Perihelion precession of Mercury’s orbit; deflection of light by the Sun;

gravitational redshift of light;
I Incredible match with Solar System constraints;
I ”Accurate” black hole shadows;
I Metric Tensor Perturbations at speed of light (LIGO, Virgo

collaborations);
I ...

Bruises:
I Singularities;
I Dark Matter and Dark Energy;
I Quantum version (seems incompatible with QM);
I Cosmological Constant;
I ...



1 Treatments | 4

Bandages and some ibuprofen:
I DE is a cosmological constant and DM is cold (beware of colds

nowadays!);
I Singularities shall be solves once full quantum gravity is found

(sometime, somewhere, someone elses);
I It matches most of the observations (so did Newton’s theory for

several centuries)
I GR is beautiful, hence leave it that way!

Surgeries:
I Look for theories beyond GR;
I How to ”change the gravity” of this situation?

> Modify the pure gravity sector of Einstein’s field equations (e.g. f(R));
> Modify the matter content sector of Einstein’s field equations (e.g.

DM, DE);
> Both (e.g. Non-minimal matter-curvature couplings).

I ...



1 Wedding Proposals (Gravity Theory and Observations) | 5

Several Alternative Theories of Gravity have been proposed in the
literature, namely:
I Horndeski/Generalised Galileon (additional scalar field);
I Further properties of spacetime (torsion, non-metricity);
I Non-minimal couplings (f (R , L), f (R , T ), f (R , R), ...);
I Loop Quantum Cosmology;
I p−forms;
I ...

Our focus here: Horndeski gravity.
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2 Greggory Horndeski, the... painter? | 7

I 1974: proposes a ghost-free scalar theory up to
second order derivatives.

I 1976: extends the model relying on an Abelian
vector field whose action is invariant under U(1)
transformations (in flat spacetime =
Einstein-Maxwell action).

I His works remain ignored. Switches career to...
painter!

I 2014 emerges a different formulation of his
theory: Generalised Galileon theories.

I Unaware of his success until a PhD student asked
him for a painting for thesis on his gravity model.

I Contains: GR, Brans-Dicke, Quintessence,
Dilaton, Chameleon, covariant Galileon...



2 Horndeski and Galileons | 8

Classical Galileon: is a field, π, which obeys to a Galilean symmetry
π → π + bµxµ + c (µ, c constant 4-vector and scalar).

Covariant Galileon: breaks Galileon symmetry, but gives origin to field
equations of order non higher than two in the spacetime derivatives, in
such way that both classical and quantum pathologies are absent [Deffayet
et al, 2011,2013].

Equivalence: Horndeski scalar gravity and Generalised Galileon Gravity are
equivalent to each other at least in four dimensions [Kobayash et al, 2011].



2 Horndeski/Generalised Galileon Gravity | 9

After GW170817:

S =
∫

d4x
√

−g
[ 5∑

i=2
Li + LM

]
, (1)

where g stands for the metric determinant, LM is the matter Lagrangian
density and Li are the Horndeski Lagrangian densities defined as:

L2 := G2(φ, X) , (2)
L3 := G3(φ, X)�φ , (3)
L4 := −G4(φ)R , (4)
L5 := G(0)

5 Gµν∇µ∇νφ , (5)

where Gi(φ, X) are arbitrary functions of the scalar field, φ, and its kinetic
term, X := 1

2 ∇µφ∇µφ, R is the scalar curvature, and Gµν is the Einstein
tensor.
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3 The Energy Problem in Gravity | 11

Energy: In GR, the gravitational field has no local energy-momentum
density. However, for asymptotically flat space-times there is a unique total
energy-momentum four vector which is conserved. Still some freedom on
the choice: ADM mass, Komar’s mass or Bondi mass.

Schoen and Yau, 1979: A lengthy proof of the conjecture that regular
space-times with physically reasonable matter would have positive total
energy.

Witten, 1981: Elegant demonstration. Stability of supersymmetric
solutions of supergravity theories. Ground state of the N=1 SUGRA,
Minkowski space is stable both classically and semiclassically.



3 Witten’s version of The Positive Energy Theorem | 12

It can be shown that the total energy-momentum tensor for an
asymptotically flat space-time is given in terms of the connection by
[Nester 1981]:

16πGV λpλ = −
∮

S
V λδσαβ

µνλ gνδ∆Γµ
δβ

1
2dSσα , (6)

which can be recast, resorting to a two-form
Eσα = 2

(
ε̄Γσβ∇βε − ∇̄βεΓσαβε

)
, with ε being the Dirac spinor,

V µ = ε̄0γµε0 with γµ the Dirac’s matrices, as:

16πGV λpλ =
∫

Σ
∇αEσαdΣσ (7)



3 Extensions of Witten’s work | 13

For any supersymmetric theory [Gibbons et al, 1983]:

∇̂αEσα = 2Gσ
α ε̄iγαεi + 4∇̂αεiΓσαβ∇̂βεi + δχaγσδχa , (8)

In General Relativity
Gµν ∝ Tµν , the positiveness of the integrand is ensured provided the
energy-momentum tensor of matter fields satisfies the dominant energy
condition, ε̄i

0γαεi
0 is non-spacelike, and the Witten condition γλ∇̂λεi = 0 is

chosen.

For nonsupersymmetric theories [Boucher,1984]:

∇̂αεi := ∇αεi + i
2 k̂γαf ij

1 εj , δχa = iγλ∇λφf ai
2 εi + f ai

3 εi . (9)

For scalar field nonminimally coupled to gravity [Bertolami, 1987].
For noncommutative scalar field coupled to gravity [Bertolami, Zarro,
2008].
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4 Results: [C. Gomes, O. Bertolami, JCAP 04, 008 (2022)] | 15

We found that: G3 = G3(φ) and:



G2X (φ, X)δij = (4G3φ(φ) − 6G4φφ(φ)) δij

24
(
κ̂(φ)f1(φ, X)ij)2

δσ
α = f3(φ, X)ai f3(φ, X)ajδσ

α+
+ 2κ̂(φ) (G2(φ, X)δσ

α + 2G4φ(φ)�φδσ
α − 2G4φ(φ)∇σ∇αφ) δij

4
(
κ̂(φ)f1(φ, X)ij)

φ
= f2(φ, X)ai f3(φ, X)aj + f2(φ, X)aj f3(φ, X)ai

f2(φ, X)ai f2(φ, X)aj = 2κ̂(φ) (−G3φ(φ) + 2G4φφ(φ)) δij

, (10)

Together with the boundary condition (by inspection of the N=1 SUGRA):

f ij
1 (φ0) =

√
G2(φ0)
6G4(φ0)δij . (11)

Zero energy states are found to be stable.



4 Other Stability Criteria | 16

Attractive Gravity
κ̂ > 0 , (12)

which is also satisfied by inspecting both numerator and denominator of
the speed of sound for avoiding of ghost and gradient instabilities, i.e.,
G4(φ) > 0.

Dolgov-Kawasacki instabilities The trace of the field equations can allow
for a dynamical equation for R , hence the associated “squared mass” can
be non-positive. For the viable models of Horndeski scalar gravity an
algebraic equation if found, hence no DK instability is expected.

R = − 1
2G4

(
T + T̂

)
. (13)



4 Cosmological implications | 17

Inflation In the absence of matter fields, Horndeski viable models should
behave as:

H2 = 8πG
3 Veff (φ) , (14)

with Veff = G2(φ)/G4(φ) (in slow-roll).

Cosmological Constant Upon a suitable identification with N=1 SUGRA,
the cosmological constant arises from:

Λ = G2(φ)
2G4(φ) , (15)

together with the solutions f1(φ) = 2
√

Λ
3 G4(φ), G3(φ) = 3

2 G4φφ(φ) and
f2(φ) = G3φ(φ)

3G4(φ) .
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5 Final Remarks and Work in Progress | 19

I Horndeski scalar gravity model as an alternative theory of gravity
I Witten’s theorem applied to Horndeski gravity
I Stability criteria

Work in Progress [to appear soon]: Analysis of Degenerate Higher-Order
Scalar-Tensor theories (DHOST).

Extension of Horndeski (and Beyond Horndeski) theories up to cubic terms,
although not involving ghost instabilities.



Thank you for your attention!
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